Stability analysis of an anisotropic rotor partially filled with viscous incompressible fluid based on Andronov-Hopf bifurcation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Andronov-Hopf bifurcation of Higher codimensions in a LiéNard System

Consider a polynomial Liénard system depending on three parameters a, b, c and with the following properties: (i) The origin is the unique equilibrium for all parameters. (ii). If a crosses zero, then the origin changes its stability, and a limit cycle bifurcates from the equilibrium. We investigate analytically this bifurcation in dependence on the parameters b and c and establish the existenc...

متن کامل

Hopf bifurcation in viscous incompressible flow down an inclined plane: a numerical approach

In this article we investigate numerically a Hopf bifurcation phenomenon for a viscous incompressible flow down an inclined plane. This problem has been discussed by Nishida et al. who proved the existence of periodic solutions bifurcating from the steady flow. Using a computational methodology based on finite elements for the space discretization and on operator splitting for the time discreti...

متن کامل

Unfolding a codimension-two, discontinuous, Andronov-Hopf bifurcation.

We present an unfolding of the codimension-two scenario of the simultaneous occurrence of a discontinuous bifurcation and an Andronov-Hopf bifurcation in a piecewise-smooth, continuous system of autonomous ordinary differential equations in the plane. We find that the Hopf cycle undergoes a grazing bifurcation that may be very shortly followed by a saddle-node bifurcation of the orbit. We deriv...

متن کامل

Hopf Bifurcation From Viscous Shock Waves

Using spatial dynamics, we prove a Hopf bifurcation theorem for viscous Lax shocks in viscous conservation laws. The bifurcating viscous shocks are unique (up to time and space translation), exponentially localized in space, periodic in time, and their speed satisfies the Rankine–Hugoniot condition. We also prove an ”exchange of spectral stability” result for superand subcritical bifurcations, ...

متن کامل

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2021

ISSN: 1070-6631,1089-7666

DOI: 10.1063/5.0055675